MicroRNA cluster miR-17-92 regulates multiple functionally related voltage-gated potassium channels in chronic neuropathic pain
نویسندگان
چکیده
miR-17-92 is a microRNA cluster with six distinct members. Here, we show that the miR-17-92 cluster and its individual members modulate chronic neuropathic pain. All cluster members are persistently upregulated in primary sensory neurons after nerve injury. Overexpression of miR-18a, miR-19a, miR-19b and miR-92a cluster members elicits mechanical allodynia in rats, while their blockade alleviates mechanical allodynia in a rat model of neuropathic pain. Plausible targets for the miR-17-92 cluster include genes encoding numerous voltage-gated potassium channels and their modulatory subunits. Single-cell analysis reveals extensive co-expression of miR-17-92 cluster and its predicted targets in primary sensory neurons. miR-17-92 downregulates the expression of potassium channels, and reduced outward potassium currents, in particular A-type currents. Combined application of potassium channel modulators synergistically alleviates mechanical allodynia induced by nerve injury or miR-17-92 overexpression. miR-17-92 cluster appears to cooperatively regulate the function of multiple voltage-gated potassium channel subunits, perpetuating mechanical allodynia.
منابع مشابه
MicroRNA-30b regulates expression of the sodium channel Nav1.7 in nerve injury-induced neuropathic pain in the rat
Voltage-gated sodium channels, which are involved in pain pathways, have emerged as major targets for therapeutic intervention in pain disorders. Nav1.7, the tetrodotoxin-sensitive voltage-gated sodium channel isoform encoded by SCN9A and predominantly expressed in pain-sensing neurons in the dorsal root ganglion, plays a crucial role in nociception. MicroRNAs are highly conserved, small non-co...
متن کاملmiR-183 cluster scales mechanical pain sensitivity by regulating basal and neuropathic pain genes.
Nociception is protective and prevents tissue damage but can also facilitate chronic pain. Whether a general principle governs these two types of pain is unknown. Here, we show that both basal mechanical and neuropathic pain are controlled by the microRNA-183 (miR-183) cluster in mice. This single cluster controls more than 80% of neuropathic pain-regulated genes and scales basal mechanical sen...
متن کاملOp-brai130191 2738..2750
Neuronal damage in the somatosensory system causes intractable chronic neuropathic pain. Plastic changes in sensory neuron excitability are considered the cellular basis of persistent pain. Non-coding microRNAs modulate specific gene translation to impact on diverse cellular functions and their dysregulation causes various diseases. However, their significance in adult neuronal functions and di...
متن کاملBidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR-103: role in pain.
Chronic pain states are characterized by long-term sensitization of spinal cord neurons that relay nociceptive information to the brain. Among the mechanisms involved, up-regulation of Cav1.2-comprising L-type calcium channel (Cav1.2-LTC) in spinal dorsal horn have a crucial role in chronic neuropathic pain. Here, we address a mechanism of translational regulation of this calcium channel. Trans...
متن کاملPotassium channels as a potential therapeutic target for trigeminal neuropathic and inflammatory pain
Previous studies in several different trigeminal nerve injury/inflammation models indicated that the hyperexcitability of primary afferent neurons contributes to the pain pathway underlying mechanical allodynia. Although multiple types of voltage-gated ion channels are associated with neuronal hyperexcitability, voltage-gated K+ channels (Kv) are one of the important physiological regulators of...
متن کامل